skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez-Morales, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Astyanax mexicanus is an emerging model system used to study development, evolution, and behavior of multiple cavefish populations that have repeatedly evolved from conspecific surface fish. Although surface and cavefish live and breed in the laboratory, there are no rapid methods for distinguishing between different cavefish populations. We present 2 methods for genotyping fish for a total of 16 population-specific markers using methods that are easy and inexpensive to implement in a basic molecular biology laboratory. This resource will help researchers maintain independent stocks within the laboratory and distinguish between fish from different populations. 
    more » « less
  2. Abstract BackgroundAggression is observed across the animal kingdom, and benefits animals in a number of ways to increase fitness and promote survival. While aggressive behaviors vary widely across populations and can evolve as an adaptation to a particular environment, the complexity of aggressive behaviors presents a challenge to studying the evolution of aggression. The Mexican tetra,Astyanax mexicanusexists as an aggressive river-dwelling surface form and multiple populations of a blind cave form, some of which exhibit reduced aggression, providing the opportunity to investigate how evolution shapes aggressive behaviors. ResultsTo define how aggressive behaviors evolve, we performed a high-resolution analysis of multiple social behaviors that occur during aggressive interactions inA. mexicanus.We found that many of the aggression-associated behaviors observed in surface-surface aggressive encounters were reduced or lost in Pachón cavefish. Interestingly, one behavior, circling, was observed more often in cavefish, suggesting evolution of a shift in the types of social behaviors exhibited by cavefish. Further, detailed analysis revealed substantive differences in aggression-related sub-behaviors in independently evolved cavefish populations, suggesting independent evolution of reduced aggression between cave populations. We found that many aggressive behaviors are still present when surface fish fight in the dark, suggesting that these reductions in aggression-associated and escape-associated behaviors in cavefish are likely independent of loss of vision in this species. Further, levels of aggression within populations were largely independent of type of opponent (cave vs. surface) or individual stress levels, measured through quantifying stress-like behaviors, suggesting these behaviors are hardwired and not reflective of population-specific changes in other cave-evolved traits. ConclusionThese results reveal that loss of aggression in cavefish evolved through the loss of multiple aggression-associated behaviors and raise the possibility that independent genetic mechanisms underlie changes in each behavior within populations and across populations. Taken together, these findings reveal the complexity of evolution of social behaviors and establishA. mexicanusas a model for investigating the evolutionary and genetic basis of aggressive behavior. 
    more » « less
  3. null (Ed.)
    The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Ca v 1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva. 
    more » « less